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Abstract— Results from design, synthesis, and analysis of 
optimal mutually dispersive symbols are presented as an 
improvement over existing symbol sets employed in Non-linear 
Ambiguity Suppression (NLAS).  A recently proposed theorem 
formulates the existence of symbol families having optimal 
mutual dispersion, a highly desirable property for NLAS 
applications.  Results from theorem analysis are presented and 
compared to other suitable NLAS symbol sets, showing 
significant improvement in mutual dispersion characteristics.  
NLAS ambiguity suppression effectiveness is demonstrated 
using a set of optimal mutually dispersive symbols. 
 

I. INTRODUCTION 
Radars employing pulsed waveforms are inherently 

ambiguous in range and Doppler.  In 1962 Palermo [1] used 
two conjugate linear frequency modulated (LFM) pulses to 
demonstrate a Non-linear Ambiguity Suppression (NLAS) 
signal processing technique for reducing ambiguous energy 
in processed radar returns.  The use of conjugate LFM 
pulses for diverse pulse coding does not extend to larger 
symbol families and thus has severe limitations for M-
channel (M > 2) NLAS applications.  Desirable NLAS 
symbol sets posses 1) large partial period autocorrelation 
peaks with low integrated sidelobe levels and 2) maximum 
signal dispersion when cross-correlating pulse codes within 
the family [2].  Symbol sets comprised of pseudo-random 
discrete codes, such as Gold codes, exhibit mutual 
dispersion properties [3] but are not optimum for NLAS. A 
root mean square (rms) time duration metric of correlation 
functions is introduced to formulate a process for obtaining 
optimal mutually dispersive NLAS symbols for arbitrary 
code family sizes [4].   

 

II. SYMBOL DESIGN 
The discovery of symbol families having desirable 

characteristics for NLAS applications is by no means a 
recent achievement. Code Division Multiple Access 
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A) communication schemes use discrete codes 
ing desirable properties for NLAS [3]. The search for 
l symbol sets has historically focused on discrete 
an avenue of research not yet providing an optimal 
n.  Using rms time duration of correlation functions 
 metric for optimality, the search for mutually 
ive codes begins by considering a pulse coded radar 
given by: 

( )∑ −=
−

=

1M

0k
k Tktf)t(x  (1) 

T is the Pulse Repetition Interval (PRI) and fk(t) has a 
r transform of the form: 
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k = l, the processed output represents a matched filter 
se whose inverse Fourier transform is the signal 
rrelation function (ACF), ρkk(t) given by:   
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LAS process requires the ACF to be as compressed 
se-like) as possible and the crosscorrelation function 
(mismatched filter response) to be as dispersed (flat) 
ible.  The rms time duration of correlation functions, 
defined in (5a), is used to quantify correlative 

ion [5].  This definition of σlk assumes ρlk(t) is 
ized to unity energy with zero mean; the dot operator 
a) and (5b) represents differentiation.      

Coding to Enhance 
y Suppression 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
14 APR 2005 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Mutually Dispersive Pulse Coding to Enhance Non-Linear Ambiguity 
Suppression 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Department of Electrical and Computer Engineering Air Force Institute
of Technology, Wright-Patterson AFB, OH, USA 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 
See also ADM001798, Proceedings of the International Conference on Radar (RADAR 2003) Held in
Adelaide, Australia on 3-5 September 2003. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER
OF PAGES 

6 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



 
 

2
1

2
lk

2
1

2
lk

2
lk d)(Pj

2
1dt)t(t












∫=












∫≡

∞

∞−

∞

∞−
ωω

π
ρσ &  (5a) 

( ) 2
1

22
kl

2
lk d)(A

2
1d)(A

2
1












∫ −+∫=
∞

∞−

∞

∞−
ωωΦΦ

π
ωω

π
σ &&&  (5b) 

 
For k = l in (5b), σkk represents the ACF rms time 

duration and is purely a function of envelope A(ω) (second 
term of second equation identically cancels).  To achieve a 
maximally compressed ACF response, (5b) is made as small 
as possible; this provides the impetus for designing optimal 
envelope A(ω) such that the ACF rms time duration is 
minimized.  Similarly, to achieve a large dispersed response, 
the CCF rms time duration, k ≠ l in (5b), is made as large as 
possible; the σlk dispersion has contributions due to both the 
envelope and the phase functions.  With the envelope 
minimization constraint in place, the phase functions are 
designed to optimize the CCF rms duration.   

Optimality in compression and mutual dispersion is 
achieved using the following process [4]:  

  
1) For optimal compression, the envelope taper is derived 

by solving solution the following constrained 
optimization problem: 
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Using calculus of variations, a cosine taper envelope of 
the following form may be derived: 
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2) For M symbols, use any set of M maximally equidistant 

unit-vectors in M-Dimensional space (hermits), 
C = [c0  c1  c2  … cM-1 ].   One solution to this hermit 
problem is defined as follows  [4]: 
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3) Choose any set of  odd basis functions given by 
 

ϕ(ω) = [ϕ0(ω) , ϕ1(ω) , ϕ2(ω) , … , ϕ M - 1(ω)]T 

 
while satisfying windowed orthonormality given by: 

 

∫2
1
π

4) De

w
di

 

5) Re
mu

 

k

      

(f

It can 
yield th

Furthe
of bas
require

 

A c
unobta
mation
natural
analysi
sample
 

k [F~

 
The nt

uniform
numbe
 

k

     

f~

The sa
realiza
of the o






≠

=
==

lk      0

lk      1
d)(A)()( kl

2
lk δωωωω ϕϕ  (9

) 

scribing M phase-rate functions as: 
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here GD is a dispersive gain factor, (dot represents 
fferentiation) yields phase functions of the form: 
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sultant time and frequency domain expressions for 
tually dispersive codes is expressed as: 
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be shown that symbols designed with this process 
eoretical ACF and CCF rms time durations of:   
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rmore, these theoretical expectations are independent 
is selection provided the aforementioned process 
ments are satisfied. 

III. SYMBOL SYNTHESIS 
losed-form expression for symbol fk(t) is generally 
inable.  Consequently, a rectangular-rule approxi-
 to the inverse Fourier transform is considered, 
ly enabling numerical methods for computational 
s.  The lth element of the kth symbol, spectrally 
d at uniform intervals of ωο, is given by 
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h element of the kth symbol, temporally sampled at 
 intervals of t0 such that toωo = 2π/Ns where Ns is the 

r of samples, is given by 
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mpled signals are further windowed in time to be 
ble.  Windowed symbol must contain at least 99.9% 
riginal energy. 



 
 

IV. BASIS SELECTION AND PERFORMANCE 

To validate the symbol design theory and the associated 
metrics, two types of basis functions are used to generate a 
family of M = 4 symbols with intermediate frequency (IF) 
bandwidth of Ω o = 2π x 103 rad/s (1.0 KHz) and dispersive 
gain GD = 10.    

 

A. Sinusoidal Basis 

The family of sinusoidal functions is one obvious choice 
of basis functions due to their orthogonal properties.  Using 
this family, the general form for each element in a set of 
sinusoidal basis functions is described as:     

 
( )ωωϕ nn asin2)( =  (16) 

   
where ak ∈ Integers, ak ≠ al ∀ k, l and bandwidth Ω0  = 2mπ 
for m , a positive integer. These constraints ensure 
compliance to the orthonormal requirement in (9).  The 
symbols were constructed using the process outlined in (5) 
to (10).  The correlation metrics of the synthesized symbols 
are summarized in Table I, including Peak Sidelobe Level 
(PSL), Integrated Sidelobe Level (ISL) and Peak Cross-
Correlation Level (PCCL).  The rms metrics of the symbols 
meet the theoretical expectation of (12) and (13) thus 
validating the symbol design theory.  The autocorrelation 
sidelobe metrics, PSL and ISL, are characteristic of the 
cosine taper envelope and remain relatively constant with 
increased bandwidth, dispersive gain, and choice of other 
basis functions.  However, the PCCL metric tends to change 
with dispersive gain, bandwidth and basis function 
selection.  As dispersive gain increases, the PCCL metric 
improves and the signal time duration (to capture 99.9% 
energy) increases.  Applications requiring shorter duration 
signals may not be able to use symbols generated with a 
large dispersive gain and benefit from lower PCCL levels.  
Thus, piecewise linear basis functions are introduced to 
“flatten” CCF sidelobes without the need to increase the 
dispersive gain to reduce PCCL’s.    
 

B. Piecewise Linear Basis 

A set of orthonormal piecewise linear basis functions is 
generated with each element in this set defined as: 
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basis functions are constructed to maintain 
ormality within a uniform taper rather than the 
l cosine taper; A(ω) in (9) is replaced with a uniform 
 However, the symbols are still synthesized with the 
taper although the phase functions are designed for a 
 envelope.  This “mismatch” is necessary to retain 

sirable sidelobes characteristics of the cosine taper 
pe.  The ACF improvement comes at the cost of 
e degradation in the rms metric of the CCF.  The 
etric will no longer adhere to (13) although (12) is 

lid for the ACF.  The correlation metrics are shown in 
I while the ACF and CCF results are shown Fig 1.  
e function windowed at 99.9% of the energy is show 
2.  A comparison of Linear Frequency Modulated 

 symbols with equivalent time bandwidth product is 
cluded to provide a measure of comparison. 

V. NLAS PERFORMANCE DEMONSTRATION 

concept demonstration, four uniquely coded, equal 
 symbols were generated using the above piecewise 
An Unambiguous input signal sU(t) was created using 
l f1(t) and random noise n(t), as shown in (18), with 
 adjusted to achieve a –20 dB signal-to-noise ratio 

.  An Ambiguous input signal sA(t) was created by 
 two symbols to sU(t) as shown in (19).  The signal 
 in f2(t) and f3(t) were adjusted to achieve a 0 dB SNR 
ambiguous signal powers are +20 dB above the 

iguous signal power.  The remaining symbol f4(t) was 
y the NLAS processor to generate the Adaptive 
ed Code Thresholds (ARCT) used for suppressing 
ous signal responses [3].     

sU(t) = f1 ( t ) + n(t) (18) 

sA(t) = sU(t) + f2 ( t ) + f3 ( t ) (19) 

iguous signal sU(t) is first input into the NLAS 
sor.  Although there is no ambiguous energy to 
ss in this case, the NLAS processor goes through all 
ssion operations and provides a “colored” baseline 
formance comparison.  Ambiguous signal sA(t) is then 
nto the NLAS processor and produces a final output 
wn in Fig. 4.  A representative focusing and 

ssion operation for one of the undesired ambiguous 
ignals is shown in Fig. 3.  As illustrated, all data 
exceeding the ARCT (dashed line) are zeroed out 
 subsequent processing [3].  The final NLAS output 

se of Fig. 4 is nearly identical to the “colored” 
se obtained from the unambiguous signal input case– 
plete suppression of f2(t) and f3(t) occurs, the 

ssed response would be identical to the “colored” 
se.  Despite the presence of ambiguous responses that 
20 dB higher than the response of interest, the NLAS 
sor output permits reliable signal detection. 



 
 

VI. CONCLUSION 

 
Sinusoidal basis functions provide a means for generating   

optimal mutually dispersive symbols, with dispersive gain   
providing control over crosscorrelation dispersion.  The 
sinusoidal basis achieves theoretical autocorrelation and 
crosscorrelation performance, in terms of rms time duration, 
demonstrating the validity of the proposed theorem. If the 
envelope optimality constraint is relaxed during phase 
functions design, piecewise linear basis functions provide 
improved performance in terms of cross correlation 
sidelobes with minimal impact on the rms metric.  

The theory of designing mutually dispersive symbols and 
the resultant generation process using sinusoidal bases 
provides a reliable method for generating M mutually 
dispersive symbols, with bandwidth Ωo controlling 
autocorrelation compression and dispersive gain GD 
controlling crosscorrelation dispersion.  Although the 
correlation rms metrics are invariant to basis function 
selection, sidelobe characteristics of the auto- and cross-
correlation functions are dependent upon the choice of 
envelope, basis functions, bandwidth and dispersive gain. 

Using the proposed symbol design process and piecewise 
basis functions, the ambiguity suppression capability of a 
NLAS process was demonstrated.  Despite the presence of 
two ambiguous signal responses that were +20 dB higher 
than the response of interest, the NLAS process yielded an 
output that clearly provides for reliable signal detection. 

 
“The views expressed in this article are those of the author(s) and 
do not reflect the official policy or position of the United States Air 

Force, Department of Defense, or the US Government.” 
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Table I   Performance Metric Comparison 

 PSL 
(dB) 

ISL 
(dB) 

PCCL 
(dB) 

σkk σkl 

ρ00(τ) -23.01 -18.85 - - - - - 5.0x10-4 - - - - - 

ρ11(τ) -23.01 -18.85 - - - - - 5.0x10-4 - - - - - 

ρ22(τ) -23.01 -18.85 - - - - - - - - - - - - - - - 

ρ33(τ) -23.01 -18.85 - - - - - - - - - - - - - - - 

ρ01(τ) - - - - - - - - - - -0.526 - - - - - 5.16 

ρ02(τ) - - - - - - - - - - -0.456 - - - - - 5.16 

ρ03(τ) - - - - - - - - - - -0.420 - - - - - 5.16 

ρ00(τ) -23.01 -18.95 - - - - - 5.0x10-4 - - - - - 

ρ11(τ) -23.01 -18.95 - - - - - 5.0x10-4 - - - - - 

ρ22(τ) -23.01 -18.95 - - - - - 5.0x10-4 - - - - - 

ρ33(τ) -23.01 -18.95 - - - - - 5.0x10-4 - - - - - 

ρ01(τ) - - - - - - - - - - -34.02 - - - - - 3.78 

ρ02(τ) - - - - - - - - - - -32.50 - - - - - 5.25 

ρ03(τ) - - - - - - - - - - -32.02 - - - - - 5.17 

ρ00(τ) -13.27 -7.11 - - - - - 3.2x10-1 - - - - - 

ρ11(τ) -13.27 -7.11 - - - - - 3.2x10-1 - - - - - 

ρ01(τ) - - - - - - - - - - -43.98 - - - - - 6.92 
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Figure 1.  Piecewise Basis Time Response [Real Part] 
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Figure 2.  Piecewise Basis: Correlation Responses (dB) 
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Figure 3.  NLAS Suppression:  1st Stage Adaptive Reserved Code Thresholding 
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Figure 4.  NLAS Output:  Ambiguous Input Data 
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